在现代工业生产流程中,确保螺栓连接的稳固性和拧紧工具的可靠性至关重要。为实现最佳的拧紧效果和标准,不仅需要在生产前对拧紧工具进行标定与认证,而且在使用过程中也需要进行持续的检测。螺纹副的扭矩控制直接关系到产品的质量和运行时的可靠性。装配扭矩受多种因素影响,包括螺纹件的材料和直径、螺纹的表面粗糙度、螺栓(或螺母)与连接件接触面的摩擦系数,以及拧紧工具的精度和转速等。此外,螺纹副联接件的状态对最终扭矩的形成也起着决定性的作用。
根据对扭矩影响的不同,螺纹副连接件的状态可分为软连接和硬连接两种。
软连接是指螺纹副连接件采用较软材质或中间夹有弹性材料(如橡胶件)的情况。在拧紧过程中,当螺纹副达到贴合点后,需要继续旋转超过324°才能达到目标扭矩。这种连接方式的特点是拧紧后扭矩会出现衰减。例如,车灯带有橡胶垫的螺钉拧紧就属于典型的软连接。
相对而言,硬连接则是指连接件硬度高、刚性强、结合面光滑且贴合度紧密的情况。在拧紧时,螺纹副达到贴合点后只需继续旋转27°以下便能达到目标扭矩。然而,在拧紧后,扭矩有可能会出现反冲(即过拧紧)现象。发动机缸体等金属与金属之间的联接便属于硬连接的范畴。
关于软硬连接的标准定义在不同规范中有所差异。按照ISO 5394:1994标准,软连接的角度变化要求较宽松,而ISO 5393:2017则更新了软连接的判定条件,规定从10%的目标扭矩到100%目标扭矩,角度变化不小于324°的连接被视为软连接,这相当于从0开始总旋转角度不小于360°。另一方面,VDI/VDE 2647标准在定义软硬连接时考虑了从目标扭矩50%到100%的角度变化,规定硬连接应小于30°,而软连接则小于360°。这些标准之间的主要差异在于角度计算的起点不同。
在自动化装配领域中,真空吸附式自动拧紧系统凭借其独特的取钉方式,已成为提升装配效率的关键技术。该系统的核心运作机制可分为三个关键阶段:
在电动工具市场中,电动螺丝刀作为紧固作业的得力助手,其性能与效率备受用户关注。随着技术的不断革新,电动螺丝刀也迎来了新的发展阶段,其中无刷电动螺丝刀和有刷电动螺丝刀成为两大主流类型。那么,这两者之间究竟有何不同呢?
在机械工程领域,螺栓紧固是确保结构连接强度和稳定性的关键步骤。然而,判断螺栓是否已正确拧紧并非一件简单的事情,它涉及多个因素的综合考量。本文将从专业技术的角度,深入解析螺栓怎样才算拧紧,包括拧紧力的确定、拧紧方法的选择以及拧紧效果的评估等方面。
吹气式螺丝机凭借其高效、自动化的优势,在工业生产中得到了广泛应用。该设备通过气流将螺丝直接输送至拧紧枪头,有效减少了取钉时间,加速了生产流程,显著提升了整体生产效率。然而,并非所有产品都适合采用吹气式螺丝机进行装配。
电动扭矩枪作为一种专业工具,其核心功能是向螺栓或螺母施加特定扭矩,在汽车制造、航空航天以及各类制造业中扮演着不可或缺的角色。它能够确保连接件依照严格的工艺规范精准紧固,进而保障整体结构的安全性与稳定性。
白车身主要由钣金件和骨架件构成,为汽车提供结构强度和刚性,并支撑其他组件的安装。其装配质量至关重要,主要在焊装车间完成。焊装车间采用螺栓连接的原因在于:一方面,螺栓连接过程中零件不易发生热变形;另一方面,随着车身轻量化趋势的发展,一体化铝铸件应用增多,螺栓连接的需求也随之上升。特别是在新能源汽车中,地板、侧围、机舱总成以及四门两盖等十多个工位装配均需使用螺栓连接。
提到自动化送钉,我们常关心卡钉率、大头螺钉、超长螺钉以及带垫片螺钉的问题。为了解决带垫片螺钉容易卡钉的问题,坚丰阶梯式送钉机对推料轨道、送料轨道及分料器机械结构进行了系统升级优化。通过这些优化措施,卡钉问题的发生率得到了显著降低,弹平垫螺钉的卡钉率仅为200PPM,上钉的稳定性也得到了大幅度提高。
在智能制造的浪潮中,产品组装工艺正经历着前所未有的变革与提升。螺丝作为制造业中不可或缺的紧固件,其自动供料技术已成为推动自动装配行业进步的关键因素。
在汽车装配领域,坚丰自动送钉机的应用带来了前所未有的高效率和高精确度,显著改进了传统的装配方法。本文将深入探讨自动送钉机的技术特点、应用案例,以及其在提升生产效率和质量控制方面的关键作用。
在新能源电机及电控装配领域,螺钉的作用至关重要。特别是对于电池这一核心部件,螺钉的稳固性和防拆性都是关键要素。为满足这些高标准要求,我们提供了一种定制化的自动送钉拧紧解决方案。