近年来,随着电子工业的装配自动化进程加速以及人工成本的不断攀升,企业纷纷转向自动化解决方案以提高生产效率。在电子设备的装配过程中,小长径比微型螺丝被广泛应用于内部元件的锁付和固定。这类螺丝的特点是帽径相对较大而总长较短,其螺杆长度与螺帽厚度之和与螺丝帽径的比值通常小于或等于1.3。
然而,对于长径比小于1.5倍的微型螺丝,传统的吹钉式供料方式往往面临螺丝翻转、位偏等问题,无法保证稳定的姿态和不卡料,从而导致设备故障报警和装配效率的降低。为了解决这一问题,坚丰公司推出了一种专为小长径比微型螺丝设计的自动送钉机构。
该机构通过其独特的结构设计,实现了小长径比螺丝的稳定送料,有效避免了卡料、叠料和螺丝翻倒等常见问题,确保了整个螺丝自动送钉过程的稳定性和高效性。此外,采用柔性化连接的设计使得送钉机构的安装位置更加灵活,便于设备的整体布局和优化。
当坚丰的自动送钉机构与拧紧模块相结合,便构成了完整的自动锁螺丝机控制系统。这一系统能够实现长径比小于1.5的螺丝的吸钉上料,并具有结构模块化、小型化的特点,非常适合大批量生产的需求。
该自动锁螺丝机控制系统由四个主要部分组成:上位机、下位机、运动执行模块和功能执行模块。上位机作为工控机,负责与用户交互、存储加工信息以及对下位机反馈的信息进行逻辑处理。下位机则是运动控制卡,它接收上位机的命令,直接控制机构的运动和执行相应功能,并收集执行器的反馈信息传递给上位机进行逻辑计算。运动执行模块负责精确地将机构移动到指定位置,而功能执行模块则负责完成与锁付相关的各项工作。
在自动锁螺丝机的工作过程中,系统会自动配置相应的默认参数。工人只需将工件放置在锁螺丝机的送料平台上并选择相应的工件型号,系统就会自动生成加工程序并开始加工操作。运动控制卡会实时读取反馈参数并记录螺丝锁付的完成情况,这些信息会显示在主界面上供工人查看。当所有螺丝都成功锁付后,工件会由送料平台送出;若有锁付不合格的螺丝,系统会提示需要补锁的螺丝编号以便工人进行补锁操作。
整个锁付过程都依赖于上位机发送的指令和运动控制卡的精确控制来实现快速高效的螺丝锁付。锁付质量的判定主要依据智能电批的反馈信号:在锁付前设定好智能电批的扭力值,当锁付结束时如果螺丝扭矩达到设定值,智能电批就会将扭矩到达信号反馈给运动控制卡表示锁付正确完成;反之则表示锁付有问题并记录下相应孔位信息同时发出报警提示人工进行补锁操作。
自攻钉,因其独特的攻丝能力而得名。与普通螺钉相比,它集成了钻头功能,无需预先加工螺孔,即可依靠自身螺纹紧密连接材料。其防滑、耐腐蚀、结构牢固及成本低等特点,使其在各行业中得到广泛应用。
自动送钉系统的频率调整是确保送钉速度精确控制的关键步骤,它不仅适应不同的生产需求,还能在效率与设备寿命之间找到最佳平衡点,同时实现节能效果。
自动螺丝供料机在锁螺丝作业中扮演着至关重要的角色,它负责螺丝的筛选和输送,极大地提高了生产效率。然而,在生产过程中,由于螺丝中可能存在的杂物、异常螺丝或操作人员的不规范使用,供料机有时会出现故障,无法正常输送螺丝。为此,坚丰自动化针对螺丝供料器常见的故障,提供了以下排查方法及解决方案。
随着国内制造业的蓬勃发展,数字化工厂转型已成为众多制造商的共同选择。在这些高度自动化的工厂中,设备繁多、流程复杂,一线员工的主要职责也逐渐转向设备的监控和调整。然而,如何有效采集并利用生产线上的数据,尤其是拧紧设备的相关数据,一直是数字化工厂面临的挑战之一。针对产线拧紧设备,其数据采集主要涉及拧紧设备本身、操作人员、结果状态以及相关物料等多个方面。目前,常见的数据采集方式主要包括工业以太网、现场总线、IO以及串口等。
在工业4.0下,为了实现智能化装配和数字化控制与管理,需要重视拧紧工具的通讯方式,并选择适合的通讯协议。通讯协议是通信双方对数据传送控制的一种约定,包括数据格式、同步方式、传输速度等问题的规定。
随着汽车制造智能化趋势的加速,螺栓装配的要求也日益提升。特别是在汽车总装、四门两盖、制动系统等关键部位,不仅需要确保夹紧力可靠,还要保证拧紧数据的实时传输,不容有失。JOFR坚丰智能拧紧工具控制器应运而生,成为这一领域的佼佼者。
在当前汽车消费市场的快速变迁中,汽车座椅的迭代速度不断加快,对生产装配的灵活性提出了更高的要求。我们凭借对市场需求的敏锐洞察和灵活响应能力,依据不同的装配工况提供稳定有效的解决方案,助力汽车座椅行业实现高质量、高效率的可持续发展。
在现代汽车制造中,座椅螺栓的拧紧质量直接关系到汽车的安全性和可靠性。随着自动化技术的发展,越来越多的汽车制造商开始寻求高效、精准的自动化拧紧解决方案。坚丰电动扭矩枪作为一种先进的电动拧紧工具,以其高精度、高效率和智能化的特点,成为汽车座椅螺栓自动拧紧的理想选择。
在3C行业电子产品装配过程中,微小型螺钉的使用量极大。由于其尺寸较小,传统的螺钉供料方式如人工送料取料,不仅效率低下,影响生产速度,还常常面临螺钉掉入产品、丢失等问题。尽管部分企业采用排列机进行自动上料,但卡钉现象频发,严重影响了上料的稳定性和装配效率。
在高度自动化的汽车制造流水线上,每一道工序都追求着极致的精准与效率。然而,当我们深入观察那些看似不起眼的细节——比如汽车门锁的拧紧作业,却往往发现它仍被传统的手动工具所束缚。工人需要手持笨重的扳手,在狭小的空间内反复操作,不仅劳动强度大,而且效率低下,更难以保证每一次拧紧的精度和一致性。这种“大机器,小手工”的反差,成为了制约汽车制造智能化升级的一个隐形瓶颈。