螺栓拧紧过程的核心在于制定合适的拧紧策略。通过对拧紧过程的各个阶段实施不同的监控策略,可以有效地降低拧紧过程中的质量风险,提高产品质量和装配效率。
使用正确的工具
正确的拧紧位置
适当的拧紧策略
每颗螺钉的准确拧紧
在拧紧策略制定中,扭矩和角度的关系至关重要。智能拧紧工具能够记录这些数据,以监测拧紧过程。合格的拧紧过程中,扭矩和角度的关系通常呈现出线性趋势。
从接触开始,到螺栓头部与工件贴合,再到最终拧紧,螺栓进入弹性变形区,持续提供夹紧力以达到目标扭矩值。在此过程中,扭矩与旋入角度呈线性关系,直至达到屈服点后进入塑性变形区。
针对不同等级的螺栓,采用不同的拧紧策略。常见的策略包括扭矩控制、扭矩+角度监控、角度+扭矩监控、夹紧扭矩控制和屈服点控制。这些策略在拧紧原理、质量和精度上各有特点。
适用于C类螺栓。
仅设定目标扭矩值,操作简单。
成本低,工具选择多样,但精度低,无法防错。
基于扭矩控制,增加角度监控以识别不合格情况。
无法克服不同摩擦系数的影响,但可识别异常。
先达到起始扭矩,再拧一个规定的转角。
精确控制夹紧力,提高拧紧精度和螺栓利用率。
对工具要求高,需全程监控扭矩和角度。
结合扭矩斜率和扭矩或角度控制。
通过扭矩斜率变化找到落座点,确保夹紧力得到控制。
适用于自攻钉和小螺钉,需采集大量样本。
高阶策略,适用于A类螺栓。
拧紧至屈服点停止,精度高,材料利用率100%。
对工况和螺栓一致性要求高。
拧紧策略的选择对于确保螺栓拧紧质量至关重要。针对不同等级的螺栓,选择合适的拧紧策略,可以最大限度地提高产品质量和装配效率。随着各行业对产品质量和安全性的要求不断提高,拧紧策略的持续优化和升级将变得更为关键。
在汽车制造业中,车灯组件的构造复杂多变,对螺丝拧紧作业提出了高要求。传统的自动工作站往往难以应对车灯装配中多角度、多层次的螺丝锁附需求,这不仅限制了生产效率,还可能影响产品质量。为此,坚丰提供了一种创新的解决方案,旨在通过先进的技术手段,实现汽车车灯在不同平面与多角度上的自动拧紧。
在追求生产效率的工业制造领域,扭矩过冲问题如同一道难以逾越的坎,阻碍着设备性能的完美发挥。扭矩过冲,即实际扭矩值超越预设范围,其危害不容小觑:螺栓的塑性变形乃至断裂、连接部件的松动、密封面的失效,以及设备整体寿命的缩短,无一不在威胁着生产的稳定与安全。
在智能制造流程中,自动送钉机的运行参数优化是保障产线效能的关键环节。本文针对设备核心参数——送钉速率的调节技术进行系统阐述,提供专业工程师操作指导方案。
在自动化装配领域中,真空吸附式自动拧紧系统凭借其独特的取钉方式,已成为提升装配效率的关键技术。该系统的核心运作机制可分为三个关键阶段:
在拧紧自攻螺钉的过程中,由于不同零件的差异,常常会产生不同的旋入扭矩。即使是同一批零件,由于一致性差异,也可能导致扭矩的不同。对于电子电器连接所使用的小螺钉,如果拧紧扭矩过小,且螺纹孔内有微小异物或螺钉受到轻微磕碰,可能会导致扭矩增大,甚至超过设定的拧紧扭矩。
在汽车制造业中,安全气囊的装配质量直接关系到车辆的安全性能。近年来,随着智能制造技术的不断发展,越来越多的汽车制造商开始采用自动化设备来提高生产效率和产品质量。坚丰智能电批为汽车安全气囊的自动拧紧工艺提供了完美的解决方案。
在新能源汽车产业的强劲推动下,车灯行业正步入前所未有的高速发展阶段,其产品已超越传统照明功能,成为汽车外观设计的重要元素,不仅保障夜间与恶劣天气下的行车安全,更成为各大车企展现创新与美学追求的舞台。在此背景下,车灯的生产装配工艺正加速向智能化、自动化和灵活化转型。
坚丰电动螺丝刀还具备强大的数据采集、上传和存储功能。通过这一功能,可以实现每颗螺钉拧紧过程的可控,以及拧紧结果的可追溯。企业可以通过通讯互联,更为直观地识别拧紧数据趋势,并根据数据趋势优化拧紧策略,为螺栓的拧紧装配提供更为可靠的数据保障。这一功能更加契合工业4.0背景下拧紧装配数字化、智能化的发展趋势,有助于空调企业提升生产管理水平,增强市场竞争力。
动力总成系统装配是汽车制造的关键环节,其中涉及多个复杂工况。为了满足企业对自动化、智能化和柔性化装配的需求,坚丰推出了创新型送钉拧紧方案。
在制造业的广阔领域中,手动工位拧紧装配作为一种基础且常见的生产方式,尤其在汽车制造、机械制造及电子组装等行业占据重要地位。然而,这种传统方式在高强度、连续性的作业环境下,往往暴露出诸多挑战与痛点。