随着自动化技术的快速发展,自动送钉系统在螺栓自动化装配中得到广泛应用。与传统的人工作业模式相比,自动送钉系统能够减轻劳动强度、降低疲劳感,并保证送钉的稳定一致性,同时可以持续自动供给螺钉,有效缩短供料周期。
然而,在实际产线应用过程中,由于螺钉来料的一致性、定位重复精度、拧紧机构加工精度、动作控制逻辑等因素,自动送钉过程中容易出现卡钉问题,需要人为干预、排除故障,从而影响产线的生产效率。
1. 送钉机结构卡钉:送钉机的结构设计直接关系到卡钉问题。在自动送钉的第一步中,螺钉需要有序排列至直振轨道上。如果吹气气流不稳定或吹气位置过高,未被及时剔除的异常螺钉容易导致螺钉积压和卡钉现象。此外,长期使用造成的直振频率共振不稳定、轨道脏污油污等因素也会导致卡钉。
2. 吹钉管卡钉:在螺钉分料过程中,通过吹钉管将螺钉送至枪头。吹钉管本身质量问题、管内径一致性差、管壁变形等因素都可能导致卡钉问题。另外,如果在选型前没有对螺钉长径比进行充分的评估并选择合适的吹钉管型号,或者弯曲半径布置不当,也会出现卡钉问题。
3. 吹钉/吸钉枪头卡钉:螺钉规格种类较多且拧紧工况情况不一样。在选择自动化送钉拧紧设备之前,应做好螺钉长径比以及拧紧工况的评估分析。如果螺钉长径比偏小或选择不当,经过模组枪头的三岔口时会存在翻钉或卡钉风险。此外,吹钉枪头夹瓣扶持后露出的螺纹长度太短,导致无法提前入孔。如果吸钉枪头设计不合理或与吸钉管的同心度不好,也容易出现螺钉吸歪的情况,导致拧紧失败。
4. 动作控制逻辑有误:除了来料和设备本身因素外,客户端对要钉信号的控制逻辑设置不当也会导致卡钉问题。如果误给信号,例如1颗螺钉已吹至枪嘴后,紧接着又有1颗螺钉吹送过来,就会造成枪嘴处2颗螺钉而引起卡钉问题。此外,产线现场的特殊设备可能对送钉机的信号产生干扰,导致重复吹钉的问题。
在优化自动送钉系统时,需要注意解决以上几种卡钉风险,提高生产效率和稳定性。可以通过改进结构设计、改善吹钉管质量和选择合适的吹钉管型号、评估螺钉长径比和拧紧工况、优化吹钉/吸钉枪头设计和调整动作控制逻辑等方式来降低卡钉风险。
螺丝锁付,这一看似简单的组装工作,实则隐藏着诸多可能影响产品质量和可靠性的不良状态。今天,我们就来深入剖析螺丝锁付中的四大隐形故障——浮钉、滑牙、漏锁和垫片漏装,并探讨如何有效避免这些问题的发生。
JOFR坚丰智能电批的拧紧曲线是反映螺栓连接质量的核心数据图谱,通过实时记录扭矩、角度、转速等关键参数的动态变化,为工艺质量监控提供可视化依据。该曲线不仅能判定最终拧紧结果是否达标,更能精准定位装配过程中的异常环节。
螺丝浮锁,指的是在拧紧螺钉的过程中,尽管扭矩已达预设目标,但螺钉却未能完全贴合工件表面,或虽贴合却未产生足够的夹紧力,导致工件未能被有效夹紧的现象。螺丝浮锁主要分为两种情况:一是扭矩达标但螺钉未贴合;二是扭矩达标且螺钉贴合,但夹紧力不足。
在工业生产领域,螺栓连接作为一种广泛采用的装配手段,对于确保产品,尤其是汽车、机械等重工业产品的质量和安全性起着至关重要的作用。
在拧紧自攻螺钉的过程中,由于不同零件的差异,常常会产生不同的旋入扭矩。即使是同一批零件,由于一致性差异,也可能导致扭矩的不同。对于电子电器连接所使用的小螺钉,如果拧紧扭矩过小,且螺纹孔内有微小异物或螺钉受到轻微磕碰,可能会导致扭矩增大,甚至超过设定的拧紧扭矩。
在电子产品装配环节,螺丝拧紧是一道至关重要的工序。传统的手动拧紧方式已逐渐被自动拧紧枪所替代。然而,现有的自动拧紧枪在吸取螺丝时,通常采用磁铁吸附或夹爪夹持的方式,这在将螺丝拧入螺丝孔的过程中,由于吸附力度不足或夹持姿态不正,螺丝容易掉落到工件内部。一旦员工未能及时捡起,便可能导致产品报废。
随着新能源汽车行业的蓬勃发展,电机作为核心部件在市场中扮演着日益重要的角色。从新能源汽车的成本构成来看,电机系统约占据总成本的10%,显示出其举足轻重的地位。而销量的快速增长也对电机的安装工艺提出了更高要求。
自从宇树人形机器人在今年春晚惊艳亮相后,它便成为了科技界的焦点,引发了广泛的讨论与关注。2024年,众多汽车主机厂和电池包生产线厂商纷纷引入人形机器人,进行工业场景的应用测试,而人形机器人自身的性能和可靠性,也成为了制造商们竞相追逐的目标。
坚丰电动螺丝刀还具备强大的数据采集、上传和存储功能。通过这一功能,可以实现每颗螺钉拧紧过程的可控,以及拧紧结果的可追溯。企业可以通过通讯互联,更为直观地识别拧紧数据趋势,并根据数据趋势优化拧紧策略,为螺栓的拧紧装配提供更为可靠的数据保障。这一功能更加契合工业4.0背景下拧紧装配数字化、智能化的发展趋势,有助于空调企业提升生产管理水平,增强市场竞争力。
随着汽车产业的迅猛进步,装配作业对于效率和精度的要求日益严苛。在这样的背景下,坚丰电动拧紧轴作为一种革新性的装配工具,正逐渐在汽车制造业中崭露头角。