流水线打螺丝并不是一件容易的事,大力出奇迹会滑丝,过小又无法拧到位,要想把螺丝打的丝滑和恰到好处,就需要控制螺丝的拧紧程度,那该如何控制呢?
在螺栓拧紧过程中,总体的受力情况是螺栓受拉而连接件受压,大致分为以下几个阶段:
1. 开始拧紧时,由于螺栓头靠近工件,压紧力为零。但由于存在摩擦力,扭矩保持较小的数值。
2. 螺栓头部靠近工件后,真正的拧紧开始,压紧力和扭矩随转角的增加而迅速上升。
3. 达到屈服点后螺栓开始塑性变形,转角增加较大而压紧力和扭矩却增加较小,甚至不变。
4. 继续拧紧,力矩和压紧力下降,直至螺栓断裂。
1. 扭矩控制法
扭矩控制是指拧紧螺栓至设定的扭矩后,拧紧控制机构停止动作。这种方法简便且扭矩容易复验,常用于不涉及安全方面的拧紧,如车体组件和家电等。
扭矩法精度受螺栓材质、加工精度、润滑状态和拧紧速度等因素影响,导致螺纹表面之间和螺母承压面的摩擦系数变化。为了保证一定的预紧力,通常采用较高的设计余量来弥补扭矩控制带来的误差。
2. 扭矩控制角度监控
在扭矩控制法中,将拧紧扭矩作为控制参数,拧紧角度作为监控值。这种方法可以鉴别螺栓的异常状态,常用于车轮、车身、发动机和变速箱等工位。
在正常情况下,拧紧扭矩和角度基本呈线性变化,变化率基本恒定。扭矩控制角度监控具有扭矩控制、角度监控、测量简便和使用标准螺栓可重复等特点,但夹紧力波动较大。
3. 角度控制扭矩监控
在扭矩转角控制法中,将拧紧角度作为控制参数,将螺栓拧紧到某一扭矩值后,再以目标角度拧紧。这种方法常用于连杆、发动机主轴承、飞轮、发动机缸盖、刹车盘卡钳和转向器等工位。
扭矩/转角控制法的夹紧力变化较小,具有角度控制、扭矩监控和较小的摩擦影响等特点,但螺栓不能重复使用。
4. 屈服点控制法
屈服点控制法是通过拧紧螺栓至屈服点后停止拧紧来实现高精度拧紧的方法。这种方法利用材料屈服时的特性进行控制,但需要严格的试验或检测以防止螺栓和螺纹损坏或断裂。
屈服点控制法能够得到较大的预紧力,并且预紧力不受摩擦系数变化的影响。常用于安全相关部件或发动机内的高可靠性部件,如制动器、发动机缸盖和液压泵等工位。
在工业自动化领域,阶梯式螺丝供料设备凭借其独特的工作原理展现出显著的技术优势,成为精密装配领域的重要解决方案。
随着市场自动化水平的持续提升,越来越多的企业开始采用自动化技术来规避人为因素对产品质量和稳定性的影响。尤其在那些对精度要求极高的工位上,自动化已成为确保批次稳定性和产品合格率的关键手段。然而,并非所有工位都能轻易实现标准化装配,特别是在手持工具进行拧紧作业的场景中。在拧紧过程中,工具的移动往往会对输出角度造成显著影响,这在角度作为拧紧策略的一部分时尤为突出。
在工业自动化领域,螺钉自动送料机以其高效、准确的特点,在装配线上发挥着不可或缺的作用。然而,多送料现象时常出现,给生产线带来卡钉、停机等风险,进而影响产品质量并可能造成设备损伤。鉴于此,本文将深入探讨如何有效预防螺钉自动送料机的多送料问题。
自动送钉机,凭借自动化控制系统,实现了螺丝的自动化输送。当前市场上,转盘式、振动盘式和阶梯式是三种主流的自动送钉机类型。它们各自拥有独特的设计特性和适用范围,能够满足多样化行业和产品的装配需求。
智能拧紧工具在当前汽车总装车间起着重要的作用。由于目前的装配工序需要工人使用拧紧工具将不同规格的螺钉按照规定的装配工艺进行拧紧,自动化程度相对较低。然而,在实现柔性化生产并进一步实现定制化智能生产的工业4.0模式方面,智能拧紧工具应运而生。
智能电批定位力臂,作为现代工业领域的创新工具,其应用范围已远远超出了传统的汽车制造边界,深入渗透到3C电子、家用电器等多个行业,凭借其卓越的灵活性和广泛的适应性,轻松应对各行业的拧紧挑战。
近年来,汽车召回事件频繁发生,其中因螺栓未正确拧紧导致的问题占据一定比例。这种看似微小的失误,却可能给汽车的安全性和可靠性带来严重影响,甚至引发重大事故。因此,螺栓拧紧质量的控制显得尤为重要。
在高速发展的3C行业装配领域,送料拧紧技术正逐步成为提升生产效率与产品质量的核心驱动力。该技术通过高度集成的自动化送料系统与智能拧紧工具的完美配合,实现了从物料精准输送到高效拧紧的一体化流程,彻底革新了传统手工送料拧紧的种种弊端,如效率低下、精度不足及易出错等问题,为行业注入了新的活力。
自从宇树人形机器人在今年春晚惊艳亮相后,它便成为了科技界的焦点,引发了广泛的讨论与关注。2024年,众多汽车主机厂和电池包生产线厂商纷纷引入人形机器人,进行工业场景的应用测试,而人形机器人自身的性能和可靠性,也成为了制造商们竞相追逐的目标。
在电子产品装配环节,螺丝拧紧是一道至关重要的工序。传统的手动拧紧方式已逐渐被自动拧紧枪所替代。然而,现有的自动拧紧枪在吸取螺丝时,通常采用磁铁吸附或夹爪夹持的方式,这在将螺丝拧入螺丝孔的过程中,由于吸附力度不足或夹持姿态不正,螺丝容易掉落到工件内部。一旦员工未能及时捡起,便可能导致产品报废。