流水线打螺丝并不是一件容易的事,大力出奇迹会滑丝,过小又无法拧到位,要想把螺丝打的丝滑和恰到好处,就需要控制螺丝的拧紧程度,那该如何控制呢?
在螺栓拧紧过程中,总体的受力情况是螺栓受拉而连接件受压,大致分为以下几个阶段:
1. 开始拧紧时,由于螺栓头靠近工件,压紧力为零。但由于存在摩擦力,扭矩保持较小的数值。
2. 螺栓头部靠近工件后,真正的拧紧开始,压紧力和扭矩随转角的增加而迅速上升。
3. 达到屈服点后螺栓开始塑性变形,转角增加较大而压紧力和扭矩却增加较小,甚至不变。
4. 继续拧紧,力矩和压紧力下降,直至螺栓断裂。
1. 扭矩控制法
扭矩控制是指拧紧螺栓至设定的扭矩后,拧紧控制机构停止动作。这种方法简便且扭矩容易复验,常用于不涉及安全方面的拧紧,如车体组件和家电等。
扭矩法精度受螺栓材质、加工精度、润滑状态和拧紧速度等因素影响,导致螺纹表面之间和螺母承压面的摩擦系数变化。为了保证一定的预紧力,通常采用较高的设计余量来弥补扭矩控制带来的误差。
2. 扭矩控制角度监控
在扭矩控制法中,将拧紧扭矩作为控制参数,拧紧角度作为监控值。这种方法可以鉴别螺栓的异常状态,常用于车轮、车身、发动机和变速箱等工位。
在正常情况下,拧紧扭矩和角度基本呈线性变化,变化率基本恒定。扭矩控制角度监控具有扭矩控制、角度监控、测量简便和使用标准螺栓可重复等特点,但夹紧力波动较大。
3. 角度控制扭矩监控
在扭矩转角控制法中,将拧紧角度作为控制参数,将螺栓拧紧到某一扭矩值后,再以目标角度拧紧。这种方法常用于连杆、发动机主轴承、飞轮、发动机缸盖、刹车盘卡钳和转向器等工位。
扭矩/转角控制法的夹紧力变化较小,具有角度控制、扭矩监控和较小的摩擦影响等特点,但螺栓不能重复使用。
4. 屈服点控制法
屈服点控制法是通过拧紧螺栓至屈服点后停止拧紧来实现高精度拧紧的方法。这种方法利用材料屈服时的特性进行控制,但需要严格的试验或检测以防止螺栓和螺纹损坏或断裂。
屈服点控制法能够得到较大的预紧力,并且预紧力不受摩擦系数变化的影响。常用于安全相关部件或发动机内的高可靠性部件,如制动器、发动机缸盖和液压泵等工位。
随着科技浪潮的奔涌,智能化成为时代主流,尤其在制造业领域。智能电批,这一新兴工具,正引领我们步入工业4.0的大门。
在机械装配过程中,无论是手动操作还是自动化设备,一个常见问题令人头痛不已——那就是螺丝浮高,业内也常称之为浮锁或浮钉。当扭矩达到预设值时,螺丝却未能完全锁入,这种现象即为螺丝浮高。那么,造成这一现象的原因究竟有哪些呢?
在智能制造的浪潮中,螺丝锁紧技术的革新成为了生产线升级的关键一环。坚丰智能电批以其卓越的性能,在精度、效率、智能化、防错性和便捷性等方面,展现出了远超传统普通电批的优势,成为工业自动化的新宠。
在现代工业生产中,坚丰扭力批与制造执行系统(MES)的融合正成为推动产业升级的关键力量。这种融合不仅提升了生产效率,还显著优化了质量控制、数据管理以及资源配置。
在制造业的精密装配领域中,螺栓拧紧机以其高效、精准的特性,尤其是在汽车制造行业,扮演着不可或缺的角色。它不仅确保了螺栓或螺母被牢固地拧紧,还极大地提升了装配的整体质量和可靠性。今天,我们就以坚丰螺栓拧紧机为例,深入剖析其组成部分及选型要点。
在科技飞速发展的时代,自动化技术正在各行业展现其强大的影响力。特别是在医疗仪器行业,全自动锁螺丝设备的引入,不仅提升了生产效率,还确保了产品的质量,为医疗设备的稳定性和安全性提供了坚实的保障。
在制造业的广阔领域中,手动工位拧紧装配作为一种基础且常见的生产方式,尤其在汽车制造、机械制造及电子组装等行业占据重要地位。然而,这种传统方式在高强度、连续性的作业环境下,往往暴露出诸多挑战与痛点。
随着汽车制造业的快速发展,拧紧枪作为汽车装配过程中的关键工具,其技术水平和应用效果直接关系到汽车的整体质量和安全性。近年来,随着自动化、智能化生产线的普及,拧紧枪技术也在不断革新,以满足汽车制造业对高精度、高效率、高可靠性的需求。
在汽车装配过程中,拧紧是一项极其重要的工作。由于汽车零部件数量众多且形状各异,需要使用不同类型的拧紧工具和拧紧方法。常见的拧紧工具有气动拧紧枪、电动拧紧枪、电流式及传感器式拧紧枪等。
在自动化装配领域,拧紧装配线的集成效率一直是自动化设备线体商所追求的目标。然而,他们在现场安装接线、编程调试等环节中常常遭遇诸多挑战,如自动送钉与拧紧的整体方案不清晰、设备调试异常频发等,这些问题严重影响了项目的顺利验收与实施进度。